Linear transformations preserving symmetric rank one matrices
نویسندگان
چکیده
منابع مشابه
Linear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملOn Linear Spaces of Skew-symmetric Matrices of Constant Rank
Linear sections of the Grassmannians G(1, n) of lines in P appear naturally in several different situations. In complex projective algebraic geometry, 3-dimensional linear sections of G(1, 4) appear in the classification of Fano threefolds, 2-dimensional linear sections of G(1, 5) define one of the smooth scrolls of P. Linear sections of dimension n − 1 of the Grassmannian of lines of P are cla...
متن کاملlinear maps preserving or strongly preserving majorization on matrices
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
متن کاملLinear Transformations on Matrices *
Even in thi s generality , it is clear that .!l' (I , ~) is a multiplicative se migroup with an ide ntity. The invariant I can be a scalar valued fun ction, e.g. , I (X) = det (X) ; or for that matter it can describe a property, e.g., m can equal M" (C) and I (X) can mean that X is unitary , so that we are simply asking for the s tructure of all linear transformation s T that map the unitary gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1989
ISSN: 0021-8693
DOI: 10.1016/0021-8693(89)90179-8